
Audio Rendering/Processing and Control
Ubiquity

a solution built using the Faust dynamic compiler
and JACK/NetJack

Stéphane Letz, Sarah Denoux, Yann Orlarey

journée FEEVER, 13 octobre 2014



The ”control, compute, communicate” model
Separation of concern

A typical audio processing application can be separated in
three parts: control, compute, communicate (with the audio
card)

!

!

"#$%!
&'($%)*+$!

*",&-!
+-./"(*(&-'!

*",&-!
,%&0$%!

!

!

The three different parts can be deployed on different
machines or control devices



Using Faust for DSP processing, JACK/NetJack
for audio

How to develop/deploy audio applications following this scheme:

using easily reusable an combinable libraries, to be deployed
on machines, tablets, smartphones...

distributed as open-source components : Faust as a Domain
Specific Language for DSP processing (”compute”),
JACK/NetJack for audio processing/rendering
(”communicate”)



Faust Language

Faust as a Domain-Specific Language for real-time signal
processing and synthesis. A Faust program denotes a signal
processor.

Faust as a high-level description language and a compiler

Faust as a flexible multiple targets DSP application/plug-ins
deployment ecosystem

FAUST 
Compiler CSound

Q

Alsa

Max/MSP
Chuck

VST

Jack

Ladspa

Coreaudio

libsndfile

PortAudio

ActionScript
Pure Data

SuperCollider

Pure

Matlab

FAUST 
Specification

etc...



Faust architecture file system
Separation of concern

The architecture file describes how to connect the audio
computation to the external world.

DSP code

User Interface 
Module

Audio Driver Module

User Interface 
Module

Audio Driver Module

DSP code



Embedding the dynamic compilation chain :
libfaust + LLVM

the Faust compiler is now available as an embeddable library
called libfaust

a LLVM IR backend is added in Faust compiler

linked with LLVM JIT libraries to produce native executable
code in memory

createDSPFactory(...), createDSPInstance(...)



JACK/NetJack audio server system

JACK/NetJack system used to establish remote communication
and compuation setup:

NetJack is low-latency master/slave audio/MIDI
communication protocol integrated in JACK2 as a set of
standalone components (netmanager, net backend,
netadapter)

NetJack can also be used as a embeddable library called
libjacknet (without having to run under the JACK server)

master part of the protocol is triggered by the audio card

slave part of the protocol will be synchronized (buffer size,
sample rate...) with the master through the network link



DSP proxy via remote DSP computation

Remote Server : waiting for compilation requests (Faust DSP
source)

server side : uses libfaust + LLVM for dynamic compilation

server/client : audio + control link with libjacknet

client side : libfaustremote proxy library with
createRemoteDSPFactory(...), createRemoteDSPInstance(...)



DEMO using FaustLive application

FaustLive (developed at GRAME by Sarah Denoux) aims to create
a dynamic environment for Faust prototyping



Remote control using OSC, HTTP, WebSocket...
!

!

!

!

"##$!
%&'#(&)!

!

!

!

!

the running application starts an embedded HTTP server
(developed using libmicrohttpd library)

the remote control code runs is delivered as an HTML page

to be executed on a remote device



Remote communication using JACK/NetJack

starting the JACK server on another machine, loaded with the
netmanager master component

in FaustLive, switching the audio driver to NetJack (slave
mode)



Remote computation using libfaustremote

quickly experiment Faust applications that use accelerometers

on iOS where embedded dynamic compilers are not allowed...



Application final export using
the FaustWeb compilation service

FaustWeb offers a multiple targets compilation service :

list of available targets is returned by the server

then the DSP code is sent and compiled on the server, and
delivered back as a binary

directly usable on the iPad as an autonomous application



Software components for the Control, Compute,
Communicate model

Part of the Faust project :

libfaust : library version of the Faust compiler

libfaustremote : proxy access to remote computation server
code

Look at http://sourceforge.net/projects/faudiostream/
on the faust2 branch

Part of the JACK2 project :

libjacknet : library version of the master/slave NetJack
protocol

Look at https://github.com/jackaudio/jack2


