
FAUST
Programming language for
audio and signal processing

Yann Orlarey

GRAME – Centre National de Création Musicale

November 28, 2013, GdT Programmation

1-Introduction

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
Main goals of the FAUST project

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

Main Goals
Notation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to easily describe dsp algorithms with a high level,
expressive and modular notation ?

By using a purely functional approach based on a block
diagram algebra

White noise formula
I Mathematical notation :

x(n) = x(n-1) * 1103515245 + 12345

y(n) = x(n) / 2147483647.0
I Faust notation :

+(12345) ~ *(1103515245) : /(2147483647.0)

Main Goals
Notation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to easily describe dsp algorithms with a high level,
expressive and modular notation ?

By using a purely functional approach based on a block
diagram algebra

White noise formula
I Mathematical notation :

x(n) = x(n-1) * 1103515245 + 12345

y(n) = x(n) / 2147483647.0
I Faust notation :

+(12345) ~ *(1103515245) : /(2147483647.0)

Main Goals
Notation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to easily describe dsp algorithms with a high level,
expressive and modular notation ?

By using a purely functional approach based on a block
diagram algebra

White noise formula
I Mathematical notation :

x(n) = x(n-1) * 1103515245 + 12345

y(n) = x(n) / 2147483647.0
I Faust notation :

+(12345) ~ *(1103515245) : /(2147483647.0)

Main Goals
Notation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to easily describe dsp algorithms with a high level,
expressive and modular notation ?

By using a purely functional approach based on a block
diagram algebra

White noise formula
I Mathematical notation :

x(n) = x(n-1) * 1103515245 + 12345

y(n) = x(n) / 2147483647.0
I Faust notation :

+(12345) ~ *(1103515245) : /(2147483647.0)

Main Goals
Notation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to easily describe dsp algorithms with a high level,
expressive and modular notation ?

By using a purely functional approach based on a block
diagram algebra

White noise formula
I Mathematical notation :

x(n) = x(n-1) * 1103515245 + 12345

y(n) = x(n) / 2147483647.0
I Faust notation :

+(12345) ~ *(1103515245) : /(2147483647.0)

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Efficiency

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to implement these algorithms with an efficiency
comparable to low level languages like C ?

By automatically translating FAUST programs to highly
optimized imperative programs. Several backends are
available :

I C++
I C
I Java
I Javascript
I LLVM

By automatic parallelization :
I OpenMP
I Work Stealing

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Deployement

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to transparently deploy these programs on a large
variety of software and hardware plateforms, from
desktop to mobile devices ?

By a separation of concerns between the audio computation
itself (described by the FAUST code), and its relations to the
external world (described by an architecture file). Recent
additions :

I Web Audio API
I iOS
I Android (Romain Michon)
I LV2 (Albert Gräf)
I AudioUnits (Reza Payami)
I Raspberry PI

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Accessibility

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to make the FAUST technology easily accessible,
including to other applications and music languages ?

By providing, in addition to the FAUST compiler itself and the
FaustWorks IDE

I Online Compiler (http://faust.grame.fr)
I libfaust (embeddable Faust Compiler)

I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I FaustLive

I FaustWeb (remote compilation service)

Main Goals
Preservation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to preserve these programs on the long term ?

Preservation by abstraction (projet ASTREE
ANR-2008-CORD-003). We abstract the programming
language and keep the mathematical semantics. We generate
a complete mathematical description of a FAUST program.

from faust expression
+(12345) ~ *(1103515245) : /(2147483647.0)

we automatically infer the mathematical equations :
y(t) = 4.6566128752458 ∗ 10−10 ∗ r1(t) and
r1(t) = 12345 + 1103515245 ∗ r1(t − 1)

Main Goals
Preservation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to preserve these programs on the long term ?

Preservation by abstraction (projet ASTREE
ANR-2008-CORD-003). We abstract the programming
language and keep the mathematical semantics. We generate
a complete mathematical description of a FAUST program.

from faust expression
+(12345) ~ *(1103515245) : /(2147483647.0)

we automatically infer the mathematical equations :
y(t) = 4.6566128752458 ∗ 10−10 ∗ r1(t) and
r1(t) = 12345 + 1103515245 ∗ r1(t − 1)

Main Goals
Preservation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to preserve these programs on the long term ?

Preservation by abstraction (projet ASTREE
ANR-2008-CORD-003). We abstract the programming
language and keep the mathematical semantics. We generate
a complete mathematical description of a FAUST program.

from faust expression
+(12345) ~ *(1103515245) : /(2147483647.0)

we automatically infer the mathematical equations :
y(t) = 4.6566128752458 ∗ 10−10 ∗ r1(t) and
r1(t) = 12345 + 1103515245 ∗ r1(t − 1)

Main Goals
Preservation

FAUST
Functional Audio

Stream

Notation

Efficiency

Deployement

Accessibility

Preservation

How to preserve these programs on the long term ?

Preservation by abstraction (projet ASTREE
ANR-2008-CORD-003). We abstract the programming
language and keep the mathematical semantics. We generate
a complete mathematical description of a FAUST program.

from faust expression
+(12345) ~ *(1103515245) : /(2147483647.0)

we automatically infer the mathematical equations :
y(t) = 4.6566128752458 ∗ 10−10 ∗ r1(t) and
r1(t) = 12345 + 1103515245 ∗ r1(t − 1)

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A signal processor is a mathematical function that maps input
signals to output signals :

I P = Sn → Sm

A (periodically sampled) signal is a time to samples function:
I S = N→ R

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
A simple FAUST program

Figure: Source code of a simple 1-voice mixer
Figure:
Resulting
application

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

2-Block Diagram Algebra

Block-Diagram Algebra

Programming by patching is familiar to musicians :

Block-Diagram Algebra
Today programming by patching is widely used in Visual
Programming Languages like Max/MSP:

Figure: Block-diagrams can be a mess

Block-Diagram Algebra
Faust allows structured block-diagrams

allpass_combs(8) feedbackmatrix(8)

delayfilters(...1, 8, 0.1))))fbdelaylines(8)

zita_rev_fdn(...1, 8, 0.1))))(48000)

Figure: A complex but structured block-diagram

Block-Diagram Algebra
Faust syntax is based on a block diagram algebra

5 Composition Operators

(A,B) parallel composition

(A:B) sequential composition

(A<:B) split composition

(A:>B) merge composition

(A~B) recursive composition

2 Constants

! cut

_ wire

Block-Diagram Algebra
Parallel Composition

The parallel composition (A,B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

Figure: Example of parallel composition (10,*)

Block-Diagram Algebra
Sequential Composition

The sequential composition (A : B) connects the outputs of A to
the inputs of B. A[0] is connected to [0]B, A[1] is connected to
[1]B, and so on.

Figure: Example of sequential composition ((*,/):+)

Block-Diagram Algebra
Split Composition

The split composition (A <: B) operator is used to distribute A
outputs to B inputs.

Figure: example of split composition ((10,20) <: (+,*,/))

Block-Diagram Algebra
Merge Composition

The merge composition (A :> B) is used to connect several
outputs of A to the same inputs of B.

Figure: example of merge composition ((10,20,30,40) :> *)

Block-Diagram Algebra
Recursive Composition

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

Figure: example of recursive composition +(12345) ~ *(1103515245)

3-Primitive operations

Faust Primitives
Arithmetic operations

Syntax Type Description
+ S2 → S1 addition: y(t) = x1(t) + x2(t)
- S2 → S1 subtraction: y(t) = x1(t)− x2(t)
* S2 → S1 multiplication: y(t) = x1(t) ∗ x2(t)

∧ S2 → S1 power: y(t) = x1(t)x2(t)

/ S2 → S1 division: y(t) = x1(t)/x2(t)
% S2 → S1 modulo: y(t) = x1(t)%x2(t)
int S1 → S1 cast into an int signal: y(t) = (int)x(t)
float S1 → S1 cast into an float signal: y(t) = (float)x(t)

Faust Primitives
Bitwise operations

Syntax Type Description
& S2 → S1 logical AND: y(t) = x1(t)&x2(t)
| S2 → S1 logical OR: y(t) = x1(t)|x2(t)
xor S2 → S1 logical XOR: y(t) = x1(t) ∧ x2(t)
<< S2 → S1 arith. shift left: y(t) = x1(t) << x2(t)
>> S2 → S1 arith. shift right: y(t) = x1(t) >> x2(t)

Faust Primitives
Comparison operations

Syntax Type Description
< S2 → S1 less than: y(t) = x1(t) < x2(t)
<= S2 → S1 less or equal: y(t) = x1(t)⇐ x2(t)
> S2 → S1 greater than: y(t) = x1(t) > x2(t)
>= S2 → S1 greater or equal: y(t) = x1(t) >= x2(t)
== S2 → S1 equal: y(t) = x1(t) == x2(t)
!= S2 → S1 different: y(t) = x1(t)! = x2(t)

Faust Primitives
Trigonometric functions

Syntax Type Description
acos S1 → S1 arc cosine: y(t) = acosf(x(t))
asin S1 → S1 arc sine: y(t) = asinf(x(t))
atan S1 → S1 arc tangent: y(t) = atanf(x(t))
atan2 S2 → S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1 → S1 cosine: y(t) = cosf(x(t))
sin S1 → S1 sine: y(t) = sinf(x(t))
tan S1 → S1 tangent: y(t) = tanf(x(t))

Faust Primitives
Other Math operations

Syntax Type Description
exp S1 → S1 base-e exponential: y(t) = expf(x(t))
log S1 → S1 base-e logarithm: y(t) = logf(x(t))
log10 S1 → S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2 → S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1 → S1 square root: y(t) = sqrtf(x(t))
abs S1 → S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2 → S1 minimum: y(t) = min(x1(t), x2(t))
max S2 → S1 maximum: y(t) = max(x1(t), x2(t))
fmod S2 → S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2 → S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1 → S1 largest int ≤: y(t) = floorf(x(t))
ceil S1 → S1 smallest int ≥: y(t) = ceilf(x(t))
rint S1 → S1 closest int: y(t) = rintf(x(t))

Faust Primitives
Add new ones using Foreign Functions

foreignexp

- ffunction
�� �- (

���- signature - ,
���- inclfile - ,

���- comment -)
����

�- fvariable
�� �- (

���- type - identifier - ,
���- inclfile -)

����- fconstant
�� �- (

���- type - identifier - ,
���- inclfile -)

���

�

-

Reference to external C functions, variables and constants can be
introduced using the foreign function mechanism.
example :

asinh = ffunction(float asinhf (float), <math.h>, "");

Faust Primitives
Delays and Tables

Syntax Type Description
mem S1 → S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
prefix S2 → S1 1-sample delay: y(t + 1) = x2(t), y(0) = x1(0)
@ S2 → S1 fixed delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3 → S1 read-only table: y(t) = T [r(t)]
rwtable S5 → S1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)]
select2 S3 → S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4 → S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

Faust Primitives
User Interface Primitives

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,inc) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,inc) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,inc) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

4-Architectures

Faust Architecture System
Motivations : Easy deployment (one Faust code, multiple targets)

FAUST
Compiler CSound

Q

Alsa

Max/MSP
Chuck

VST

Jack

Ladspa

Coreaudio

libsndfile

PortAudio

ActionScript
Pure Data

SuperCollider

Pure

Matlab

FAUST
Specification

etc...

Faust Architecture System
Principle : separation of concerns between the audio computation and its usage

DSP code

To provide easy deployment, the DSP code generated by compiling
a Faust program should be pure audio computation, abstracted
from any audio drivers or GUI toolkit.

Faust Architecture System
Audio driver and User Interface modules

User Interface
Module

Audio Driver Module

The role of the architecture file is to provide the missing
information: the audio drivers and the user interface. The new
modular architecture file combines an Audio driver module and one
or more User Interface modules.

Faust Architecture System

User Interface
Module

Audio Driver Module

DSP code

The Faust compiler wraps the DSP code into the selected
architecture file. For examples
faust -a jack-gtk.cpp noise.dsp will wrap the DSP code of
a noise generator into the architecture of jack-gtk standalone
application.

Faust Architecture System
Examples of supported architectures

Audio plugins :
I AudioUnit
I LADSPA
I DSSI
I LV2
I Max/MSP
I VST
I PD
I CSound
I Supercollider
I Pure
I Chuck
I Octave
I Flash

Audio drivers :
I Jack
I Alsa
I CoreAudio
I Web Audio API

Graphic User Interfaces :
I QT
I GTK
I Android
I iOS
I HTML5/SVG

Other User Interfaces :
I OSC
I HTTPD

5-Compiler/Code Generation

6-Performances

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Audio-visual installation involving a cube of light, reacting to
sounds, immersed in an audio feedback room (Trafik/Orlarey
2006).

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube

8 loudspeakers

6 microphones

audio software, written in FAUST, controlling the audio
feedbacks and the sound spatialization.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Compared performances of the various C++ code generation
strategies according to the number of cores :

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Sonik Cube

Mac Pro 8, Faust 0.9.20, icc 11.1.069

omp
sch
scal
vec

performance (MB/s)

n
u

m
b

e
r

o
f

c
o

re
s

7-DocumentationPreservation

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Files generated by Faust2mathdoc noise.dsp

H noise-mdoc/

H cpp/

� noise.cpp

H pdf/

� noise.pdf

H src/

� math.lib

� music.lib

� noise.dsp

H svg/

� process.pdf

� process.svg

H tex/

� noise.pdf

� noise.tex

8-Resources

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
FAUST Quick Reference

Figure: Faust Quick Reference, Grame

Resources
Some research papers

2004 : Syntactical and semantical aspects of Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Soft Computing, vol
8(9), p623-632, Springer.

2009 : Parallelization of Audio Applications with Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Proceedings of the
SMC 2009-6th Sound and Music Computing Conference,

2011 : Dependent vector types for data structuring in
multirate Faust, Jouvelot, P. and Orlarey, Y., in Computer
Languages, Systems & Structures, Elsevier

9-Acknowledgments

Acknowledgments
OS Community

Fons Adriaensen, Thomas Charbonnel, Olivier Guillerminet, Pierre Guillot, Albert
Gräf, Stefan Kersten, Victor Lazzarini, Kjetil Matheussen, Yan Michalevsky, Romain
Michon, Rémy Muller, Reza Payami, Stephen Sinclair, Travis Skare, Julius Smith,
Mike Solomon

Sponsors

French Ministry of Culture, Rhône-Alpes Region, City of Lyon, National Research
Agency

Partners from the ASTREE project (ANR 2008 CORD 003 02)

Jérôme Barthélemy (IRCAM), Karim Barkati (IRCAM), Alain Bonardi (IRCAM),
Raffaele Ciavarella (IRCAM), Pierre Jouvelot (Mines/ParisTech), Laurent Pottier
(U. Saint-Etienne)

Former Students
Tiziano Bole, Damien Cramet, Sarah Denoux, Étienne Gaudrin, Matthieu Leberre,
Mathieu Leroi, Nicolas Scaringella

	Introduction
	Block Diagram Algebra
	Block-Diagram Algebra
	Primitives
	Primitives
	Architectures
	Compiler
	Performances
	Documentation Preservation
	Automatic Mathematical Documentation
	Resources
	Acknowledgments

