
A Taste of Sound Reasoning in Faust

Emilio Jesús Gallego Arias, Olivier Hermant, Pierre Jouvelot

MINES ParisTech, PSL Research University, France
{emilio.gallego_arias, olivier.hermant, pierre.jouvelot}@mines-paristech.fr

Abstract
We address the question of what software verifica-
tion can do for the audio community by showcasing
some preliminary design ideas and tools for a new
framework dedicated to the formal reasoning about
Faust programs. We use as a foundation one of the
strongest current proof assistants, namely Coq com-
bined with SSReflect. We illustrate the practical
impact of our approach via a use case, namely the
proof that the implementation of a simple low-pass
filter written in the Faust audio programming lan-
guage indeed meets one of its specification properties.

The paper thus serves three purposes: (1) to pro-
vide a gentle introduction to the use of formal tools
to the audio community, (2) to put forward program-
ming and formal reasoning paradigms we think are
well suited to the audio domain and (3) to illustrate
this approach on a simple yet practical audio signal
processing example, a low-pass filter.

Keywords
DSP; audio; program verification; theorem proving

1 Introduction
Formal program verification is gaining strong
support in the computer programming world
with projects such as the CompCert certified
C compiler [Leroy, 2009], with more and more
tools such as the Coq1 proof assistant striving
to ease the development of correctness proofs for
hopefully the every-day programmer.
While there has been some work in the

mathematical correctness of DSP — see for in-
stance [Krishnaswami, 2013; Brunel et al., 2014]
for type-based techniques, and [Souari et al.,
2014; Ghafari et al., 2011] for approaches using
theorem proving — formal verification is still
largely absent in the DSP and Computer Music
(CM) communities. Yet, users and musicians are
always striving for ever better sound experience
and audio realism. Thus, ensuring the adequacy
between an intended audio specification, for in-
stance some sort of a limited-bandwidth filtering,

1coq.inria.fr

and its actual implementation, along with other
key properties such as robustness [Chaudhuri
et al., 2012] or Bounded-Input Bounded-Output
(BIBO) stability, is warranted. Too often, the
only correctness test performed is to check that
“it sounds about right”, which is a methodology
that clearly deserves some improvements.
The overall goal of our paper is to provide

a case for the introduction of tools and best
practices dedicated to the formal mathematical
reasoning about audio/sound application pro-
grams. We illustrate this vision via the use
of Coq/SSReflect for the Faust audio lan-
guage2. We introduce a new framework for math-
ematically reasoning about Faust audio pro-
grams. We show how simple properties can be
already proven for some Faust filtering applica-
tions using such an approach, thus paving the
way to the future introduction of dedicated proof
techniques for audio processing systems.
This paper is structured as follows. In Sec-

tion 2, we introduce the Coq proof assistant
and its SSReflect extension, which we use all
along. Section 3 describes the Faust language
core, using a low-pass filter as an example, while
Section 4 provides a Coq implementation. We
introduce in Section 5 a specific logic that will
help reasoning about Faust programs. We fi-
nally put these tools into good use in Section 6,
where we show how the low-pass filter can be
proven equivalent to its specification. We discuss
future work and conclude in Section 7.

2 A Coq/SSReflect Tour
Coq [Bertot and Castéran, 2004] is a software
development environment in which programmers
can write functional programs and prove proper-
ties about them. Coq’s programming language
Gallina is very similar to other functional pro-
gramming languages like Ocaml, but with some
added restrictions (in particular, all Coq pro-

2http://faust.grame.fr

grams must terminate) and a more advanced
type system. Coq is a strongly-typed language;
in particular, a type is understood as a property
P , and an expression e of type P , written e : P,
is the proof for P .

SSReflect [Gonthier et al., 2008] is a proof
language and extensive library built on top of
Coq. It promotes a structured style of pro-
gramming and facilitates proof development by
profiting from the fact that many properties of
interest can be expressed as programs of type
boolean.
Recursive Definitions We will illustrate
some basics of the SSReflect’s proof language
by proving a toy property over a toy program-
ming language. We first load some required
libraries:
Require Import ssrfun ssrbool eqtype ssrnat.

The Abstract Syntax Tree (AST) of our toy pro-
gramming language is defined in Coq with the
Inductive command:
Inductive exp : Type :=
| cst : nat Ñ exp
| mul : exp Ñ exp Ñ exp.
Notation "’ n" := (cst n).
Notation "a ˆb" := (mul a b).

which declares the recursive (so-called inductive)
type exp with two constructors, cst for embed-
ding natural integer constants, and mul for the
multiplication of two expressions. Coq provides
support to declare convenient notations such as
ˆ for the multiplication operation.
Recursive functions are declared in Coq us-

ing the Fixpoint command. Then, the value of
an expression in our toy language is defined by
recursion over its structure:
Fixpoint eval (e : exp) : nat :=
match e with
| ’n => n
| e1 ˆ e2 => eval e1 ∗ eval e2

end.

We can run our program with the Eval com-
mand:
Eval compute in eval (’2 ˆ(’0 ˆ ’3)).

which will display, as expected, 0. Going one step
further, Ocaml code can be generated automati-
cally from Coq programs, providing reasonably
efficient and provably-correct implementations
of the specified algorithms.
Proving Properties Following upon our pre-
vious simple test, assume we want now to
prove the following, 0-absorbing property, named
eval0eB: all expressions e that contain a ’0

subexpression evaluate to 0. We can write a
boolean function mem_exp that checks if ’0 oc-
curs in an expression e easily3:
Fixpoint mem_exp m e :=
match e with
| ’n => n == m
| e1 ˆ e2 => mem_exp m e1 || mem_exp m e2

end.

Theorem eval0eB is rephrased now as: for all
expressions e, if mem_exp 0 e is true, then eval
e is 0. Let’s begin by proving an easier property
for constant expressions; it is stated here in Coq
as Lemma eval0cB, followed by its proof:
Lemma eval0cB :
forall n, mem_exp 0 (’n) Ñ eval (’n) == 0.

Proof. by move=> n /=; exact. Qed.

In addition to programming in Gallina, we can
also use automated program building procedures
called tactics. We can use an interactive proof
editor such as Proof General of CoqIDE to step
from Proof to Qed; after each tactic (terminated
by a .), the current proof state is displayed. The
proof state consists of a set of hypotheses e : t
(the “context”) and a goal g which should be seen
as a stack of properties p0->....->pn->g. Most
SSReflect tactics tac can perform context ma-
nipulation operations before and after running.
tac: x will remove a named hypotheses x : p from
the context, pushing p to the goal before tac is
run; tac => x will pop the top of the goal af-
ter tac is run, naming it x. Thus, if p0->A is
the current goal, move=> x will add x : p0 to the
context. Plenty of additional operations can be
performed in addition to moving.
The previous proof started with the

documentation-only Proof command, getting
the goal:
forall n, mem_exp 0 (’n) Ñ eval (’n) == 0.

with an empty context. The first step is to
move n to the context with move=> n /=. The /=
switch asks Coq to perform partial evaluation of
the goal, resulting in a new goal n == 0 Ñ n == 0,
which the exact tactic solves. Finally, Qed
checks that the proof is correct, and, as for all
previous function and type definitions, eval0cB
is added to the global context for further use.

Moving then to our full theorem, we state:
Theorem eval0eB :
forall e, mem_exp 0 e Ñ eval e == 0.

Proof.
elim.
´ by apply: eval0cB.
´ move=> e1 H1 e2 H2 /=.

3Coq uses type inference to get the types of m and e.

case/orP=> [/H1 | /H2] /eqP Ñ .
+ by rewrite mul0n.
+ by rewrite muln0.

Qed.

Here, the proof starts by performing induction
on the structure of expressions. The induction
tactic elim operates on the top of the goal, which
in this case is the expression e. The base and
inductive subgoals are generated, displayed as:
subgoal 1 (ID 18) is:
forall n : nat, mem_exp 0 (’ n) Ñ

eval (’ n) == 0

subgoal 2 (ID 19) is:
forall e : exp,
(mem_exp 0 e Ñ eval e == 0) Ñ
forall e0 : exp,
(mem_exp 0 e0 Ñ eval e0 == 0) Ñ
mem_exp 0 (e ˆe0) Ñ eval (e ˆe0) == 0

We must prove each goal separately (the - and
+ symbols indicate a new proof step). The base
case is dealt with by first using Lemma eval0cB
from the global context with the apply tactic
(the by so-called “closing tactical” ensures that
the current goal is finished). In the inductive
case, the goal includes the facts that eval0eB is
true on each subexpression, named here e and
e0 by Coq. We first move e and e0, renamed
e1 and e2, to the context, each followed by its
induction hypotheses Hi, before performing a
partial evaluation. After the move, we have the
following proof state:
e1 : exp
H1 : mem_exp 0 e1 Ñ eval e1 == 0
e2 : exp
H2 : mem_exp 0 e2 Ñ eval e2 == 0
============================
mem_exp 0 e1 || mem_exp 0 e2 Ñ

eval e1 ∗ eval e2 == 0

The top of the goal is a boolean disjunction,
on which we can perform case analysis using
the case tactic with the orP view. Each of the
two resulting cases happen to be the premise of
the induction hypotheses, H1 and H2; thus the
disjunctive pattern [/H1|/H2] will rewrite the goal
to:
eval e1 == 0 Ñ eval e1 ∗ eval e2 == 0

and similarly for e2. The pattern /eqPÑ will
rewrite eval e1 to 0 in the goal obtaining a goal
of 0 ∗ eval e2 == 0.
This particular step is paradigmatic of the

“proof by rewriting” technique: from a property
a = b, we can replace all a terms occurring in the
goal by b. The final step of the proof is again by
rewriting, this time using the mul0n and muln0

lemmas part of the ssrnat library, with type
mul0n : forall x, 0 ∗ x = 0 and symmetrically.

Rewriting Magic SSReflect’s emphasis on
boolean expressions fosters proof by rewriting in
arithmetic proofs. For instance, in the following
lemma:
Lemma leq_2add :
forall (x y : nat), x <= y Ñ x + x <= y + y.

Proof. by move=> x y xy; rewrite leq_add. Qed.

the proof, where “ ; ” combines proof steps, is done
by rewriting with the leq_add lemma, provided
by the ssrnat library, of type:
leq_add : forall (m1 m2 n1 n2 : nat),

m1 <= n1 Ñ m2 <= n2 Ñ m1 + m2 <= n1 + n2

How could that happen? Equalities do not seem
to occur in the conclusion of leq_add, but they
have actually just been removed by the pretty
printer. In fact, the exact conclusion is a boolean
equality, namely m1 + m2 <= n1 + n2 = true, as
the resulting type of the <= operator is
boolean. Thus, x + x <= y + y = true can be
easily matched and rewritten to true with proper
bindings of leq_add variables, leading to the goal
true = true.

Going Further It is obviously impossible to
give a complete overview of SSReflect in two
pages. In particular, SSReflect advocates par-
ticular conventions and coding styles that we
did not fully follow for the sake of space and
pedagogy. In particular, the idiomatic proof for
Theorem eval0eB is:
by elim=> //= ? IH1 ? IH2 /orP

[/IH1|/IH2] /eqP Ñ ; rewrite ?(mul0n, muln0).

The Mathematical Components library is a com-
panion project to SSReflect, and includes
extensive libraries about finite groups, algebra,
number theory and more, which have been used
to formally prove significant large theorems like
the Four Color or Feit-Thompson theorems.

3 The Faust Audio Language
Faust— which stands for “Functional Audio
Stream” — is a DSP language [Orlarey et al.,
2004]. Faust’s main focus is the fast develop-
ment of efficient digital audio programs, and has
been used in live performances and offline and
online audio applications, such as FaustLive [De-
noux et al., 2014] or moForte 4. It has also been
used in other signal processing contexts [Barkati
et al., 2014].

4www.moforte.com/

Framework Faust programs are structured
in two layers. The high-level layer is a macro lan-
guage corresponding to an untyped, full-fledged
functional language. It is used to generate pro-
grams written in the Core Faust syntax, where
only a few primitives are available. In order
to deal with the real-time constraints imposed
by audio processing, Faust programs are then
optimized and compiled towards an efficient lan-
guage; Faust’s main compiler generates C++
code, while alternative backends can now gener-
ate other formats, such as asm.js code.

While the core language is unpractical for writ-
ing real applications, it contains enough prim-
itives for the rest of this paper. Moreover, it
enjoys a strong type system and operational se-
mantics. For a more precise description of Faust
syntax and semantics, we refer the reader to [Jou-
velot and Orlarey, 2011].

Semantics Signal processors are Faust’s key
components. A signal is a (potentially infinite)
stream of amplitude values. In the discrete case,
we can represent signals as functions from (dis-
crete) time to real numbers. Formally, we write
S for the function space NÑ R. We assume that
signals have amplitude 0 when time is negative.
Signal processors from i inputs to o outputs are
functions in Si Ñ So, and every valid Faust
program can be interpreted as a function of this
type. We use “semantics brackets” to denote
the function that maps a Faust program to its
mathematical interpretation. For instance, the
delay processor, which delays its input signal by
1 audio sample, is denoted as:

JdelayKpiqpnq “ ipn´ 1q.

The first argument i is the signal to be delayed,
and n represents time. Then, delay will simply
return the sample from i corresponding to the
previous time value.

Core Faust For the purposes of this paper,
we focus on a minimal but functional subset
of Faust consisting of three particular signal
processor-building blocks: primitives, composi-
tion, and feedback.

Examples of primitive signal processors are +,
which takes as input two signals and outputs a
signal with amplitude the sum of the input signal
amplitudes, or ∗(c), that scales the amplitude by
a constant factor c. Formally:

J`Kpi1, i2qpnq “ i1pnq ` i2pnq
J˚pcqKpi1qpnq “ c ˚ i1pnq.

Figure 1: Simple Feedback in Faust

We write f : g for the composition of signal
processors f and g:

Jf : gKpiq “ JgKpJfKpiqq.

The interesting construction is feedback, writ-
ten as f „ g. In this case, f is assumed be a
processor from two signals to one, and g, a unary
signal processor. Then, f „ g represents the 1-
delay feedback loop through g.

Jf „ gKpiq “ JfKpJgKpJf „ gKpJdelayKpiqqq, iq.

Note that the definition of the semantics of feed-
back is recursive. For example, the Faust pro-
gram + „ sin is depicted in Figure 1.
A Simple Low-Pass Filter For the rest of
the paper, we will work with a simple low-pass
filter written in Faust as:
smooth(c) = ∗(1 ´ c) :+ „∗(c).

smooth is intended to be used with a coefficient
c in the interval r0, 1s. If c is 0, then the filter
has no effect, whereas as we increase c the cutoff
frequency decreases, with a limit case of c “
1, that outputs a constant signal. The filter
first multiplies the input amplitude by 1 ´ c,
then to perform 1-sample additive feedback with
coefficient c. Its block diagram with c “ 0.9 is
drawn in Figure 2.
While this filter may not be very adequate

for audio, due to its frequency response curve,
it is useful for instance for smoothing control
parameters, and for other applications with high-
frequency components. A key property of filters
is stability. That is to say, we expect smooth’s
output amplitude to remain in bounds that de-
pend on the input. An excessive amount of
feedback could cause the filter to behave badly.

Figure 2: The smooth Low-Pass Filter

Stability also helps in compilation, as bounds
known in the input signal can be propagated to
the output, helping with buffer allocation and
other issues.

4 Formalizing Faust in Coq
In the previous section, we described a core sub-
set of Faust on paper. In this section, our goal
will be to replicate this description inside a mech-
anized framework, Coq. This will enable us to
latermechanically reason about Faust programs,
avoiding a lot of potential error sources and get-
ting strong confidence on the soundness of our
reasoning.

Overview Mechanized reasoning about pro-
grams requires to encode their behavior or seman-
tics in the particular theorem prover of choice.
In a sense, this is equivalent to defining an in-
terpreter ; however the idiosyncrasy of theorem
proving often makes the process quite different
from writing a regular interpreter or compiler for
our language.
Once the semantic representation is in place,

we can wonder whether two programs have the
same behavior (read: semantics), what happens
when the input does not meet certain criteria,
etc.
The concrete tasks we need to complete in

order to start reasoning about Faust programs
in Coq are: a) define a representation of Faust
syntax in Coq; b) define a representation for
signals, or streams, in Coq; c) write a function
that takes a program’s AST and returns a stream
processor.

Once this is done, we can start proving! How-
ever, a key point in theorem proving is how con-
venient will it be to write proofs. We would
have a hard time justifying formalized reason-

ing if we needed thousand of hours and lines
of proof to perform trivial reasoning. We will
address this point in Section 5, while devot-
ing the rest of this one to explain how Faust
is embedded into Coq. All the Coq code
and examples can be downloaded from https:
//github.com/ejgallego/mini-faust-coq/.

Faust AST in Coq We will encode the syn-
tax of the program using an algebraic or inductive
data type. ADT (Abstract Data Types) are one
of the most powerful features of Coq, allowing
the user to define new richly-typed datatypes.
In Section 2, we saw an example of an ADT for
expressions. Here, we will make use of an extra
feature known as indexed or dependently-typed
ADT. Thus, we will encode Faust expressions
using the fterm datatype, which carries addi-
tional information about the number of input
and output signals of the program:

Inductive fterm : nat Ñ nat Ñ Type :=
| mult : num Ñ 1 1
| plus : 2 1
| comp : 1 1 Ñ 1 1 Ñ 1 1
| feed : 2 1 Ñ 1 1 Ñ 1 1
where "i o" := (fterm i o).

Notation "’+" := plus.
Notation "’∗(c)" := (mult c).
Notation "f : g" := (comp f g).
Notation "f ~ g" := (feed f g).

Thus, a program of type i o will exactly go
from i to o channels. Note that the constructors
that correspond to the primitives enforce this
requirement. In particular two signal processors
can be composed only if they have the right
types; thus no ill-typed Faust program can be
built. We also define some notations to make
display nicer.

Now, we can define our simple low-pass filter
as follows:
Def smooth c : 1 1 := ’∗(1 ´ c) : ’+ ~ ’∗(c).

Streams in Coq Once we have defined the
syntax of our Faust programs, the next step is
to define their semantics. We will encode signals
as finite-length sequences of reals. We could
have used several other representations, but it
is beyond the scope of this paper to discuss the
advantages of this particular definition.
We will index signals by their length, using

the SSReflect type n.´tuple R, the type of
sequences of exactly n reals. We write ’S_n for
n.´tuple R to shorten notation. Signal proces-
sors are encoded using regular Coq functions:
Notation "’S_n" := (n.´tuple R).
Notation "’SP(i,o)" := (@ n, ’S_n^i Ñ ’S_n^o).

For instance, the type for signals with three
samples is ’S_3. A signal processor (of type
"’SP(i,o)") must be able to process signals of
arbitrary length; thus we quantify the second
definition on all lengths n. We write ’S_n^k for
k copies of ’S_n, e.g., ’S_n^2 is (’ S_n ∗ ’S_n).
Interpretation Function With both syntax
and semantics in place, we can define a function
linking the two worlds. In our case, a Faust
expression of type i o will be interpreted by a
Coq function of type @ n, ’S_n^i Ñ ’S_n^o. Our
interpreter I will thus have type:
I : i o Ñ ’SP(i, o)

Given a program f, the resulting function I f
is effective, that is to say, given input signals, it
computes the corresponding output ones. In par-
ticular, I f n formally corresponds to the seman-
tic brackets introduced in Section 3, restricted
to the first n samples of the signal. We write
JfK|n for this truncated semantics.
How is I defined? Definition for primitives

and composition is straightforward; the most
interesting case is the feedback:
Definition I_feedback f g n i :=
iter n (fun fb => f (g (x0 :: fb), i)) [::].

where x0 is the initial value for the feedback
loop, usually 0, and iter n f x is the function
that applies f n times to x.

Note that this function outputs a signal of size
n when the input is of size n, and does so by
computing the feedback for n steps. The reader
familiar with signal processing will notice that
this implementation is extremely inefficient, as
it may take quadratic time even for simple pro-
grams! Indeed, the goal of our interpretation is

not to achieve efficiency, but to have a convenient
representation of the semantics in order to reason
about it. Usually, efficient implementations are
not very well-suited for reasoning and vice-versa.
The usual remedy when we care about efficiency
inside Coq is to define two implementations, and
prove them equivalent [Dénès et al., 2012].
First Steps in Proving With those ingredi-
ents, we can start reasoning about programs. For
instance, a proof of the fusion property of the
multiplication stream processors is:
(∗ Fusion of mult ∗)
Lemma multF : I (’∗(a) : ’∗(b)) = I (’∗(a∗b)).
Proof.
apply: val_inj; case: i => s /= _.
by elim: s => //= x s Ñ ; rewrite mulrCA mulrA.

Qed.

The proof is straightforward, by induction, as-
sociativity, and commutativity of the multipli-
cation operator of the real numbers. However,
some amount of boilerplate is necessary to set
up the induction, task that can get tricky with
more complex programs. Indeed, this inductive
proof method is common to most proofs; thus
we will identify common patterns and will define
higher-level reasoning principles that allow us to
prove things with less effort in the next section.

5 Structured Reasoning: A Sample
Logic

As we just saw in Section 4, the Coq semantics
allow us to state — and attempt to prove —
almost any property imaginable about Faust
programs. However, in most cases, reasoning can
be repetitive, long and error-prone. That is the
price we have to pay for accessing such a power.
A key observation is that proofs of certain

classes of properties share common parts, while
only a minor part of the proof actually depends
on the property. As we saw in the previous fusion
case, the relevant part of the proof is less than
10% of its total code.

Imagine a property ϕ, supposed to hold for all
samples of a signal. Then, it is enough to define
ϕ as a predicate over one sample, and we can
“automatically” lift the predicate over signals,
checking that ϕ holds for all time.
Indeed, to illustrate the principles of high-

level structured reasoning over programs, we will
focus on such “sample-level” properties in this
section. While we will sacrifice quite a bit of
expressivity, by limiting our language to one-
sample statements, this will still be enough to
carry out proofs of stability and will significantly

facilitate our proofs, allowing us to proceed in a
short and structured way.
Sample-level Properties For our purposes,
a predicate over a sample is a function from
reals to booleans, ϕ,ψ P R Ñ B, or, in Coq,
P, Q : R Ñ bool. Then5, we say a property ϕ
holds for a signal s if @n.ϕpsrnsq; that is, for
all time moments n, the sample meets ϕ. In
Coq, we can use the all function for sequences,
thus writing all P s. For instance, the prop-
erty that a signal is bound by the interval ra, bs
is defined as ϕpxq “ x P ra, bs, or in Coq as
P := fun x => x \in ‘[a,b].

It makes sense to extend our properties to sig-
nal processors. In this case, we would like to
relate properties over input signals with proper-
ties over the output signals. Given sample-level
properties (ϕ,ψ) and input and output signals
(i, o), a reasonable statement could be: “if the
input signal i satisfies ϕ, then o should satisfy
ψ.”

If we think of our previous “being in an interval”
property, its extension to signal processors allows
us to capture stability. Indeed, we can precisely
state now: “if the input signal is bounded, then
the output signal will be too.”
Judging the Sampling The previous relation
between input and output signals and their prop-
erties constitutes an instance of a “high-level”
reasoning principle. It is highly convenient thus
to encode the fact that a signal processor satisfies
the property as a “judgment.” Our judgments
will be of the form, tϕu f tψu, with intended in-
terpretation Jtϕu f tψuK such that, for all input
signals with samples satisfying ϕ, all the output
samples of f satisfy ψ. Formally:

Jtϕu f tψuK ðñ
@i.p@t.ϕpiptqqq ùñ p@t, ψpJfKqpiqptqq

the Coq version is expressed in a slightly differ-
ent way, using all:
Definition ’[[{ P } f { Q }]] :=

@ n (i : ’S_n), all i P ==> all (I f n) Q.

In the case of i input and o output signals, judge-
ments are extended pointwise to use one predi-
cate per signal: Jtϕ1, . . . , ϕiu f tϕ1, . . . , ϕouK.
Reasoning Rules Now, we’d like to have a
system of rules to determine when a judgment is
valid without resorting to analyzing its seman-
tics.

5From now on, we will interchangeably use Coq and
mathematical notation where no confusion can arise, omit-
ting double definitions.

The standard way to achieve this goal is to
introduce a “logic”, or a set of rules to infer
validity of judgments, and, by extension, of their
intended properties. The form of a rule is

A1 . . . An

B

meaning that, ifA1, . . . , An are valid, thenB also
is. This way, we can hopefully reduce validity
checking for B to smaller problems.

The rules of our particular system for sample-
level reasoning are shown in Figure 3. Rule Prim
is an example of a base rule, stating that a judg-
ment about a primitive is valid if its semantics is.
Rule Comp allows to reduce the verification of
composition to the verification of its individual
parts; a judgment about composition is valid if
there are valid judgments about the individual
signal processors such that the property of the
output of f implies the required property for the
input stream of g.
The Feed rule is quite similar to the compo-

sition rule: the internal state of the feedback
should obey an invariant θ, and samples from
the feedback output should be compatible with
the requirements of g’s input. We also require
that the initial value x0 satisfies ψ.
Now, all that remains is to check that the

rules are sound, that is to say that validity of the
premises implies the validity of the conclusion,
and we can reason using the newly defined logic:

Theorem 5.1 (Soundness). For any program f
of type i o, if tϕ1, . . . , ϕiu f tψi, . . . , ψou is
derivable, Jtϕ1, . . . , ϕiu f tψi, . . . , ψouK is valid.

Proof. We proceed by induction on the deriva-
tion. The base case is the Prim rule, and proof is
immediate. For Comp soundness automatically
follows by induction hypotheses. For Feed , we
apply induction on the length of the input signal,
plus induction hypotheses.

6 Case Study: Filter Stability
As a case study, we will verify that the smooth
filter of Section 3 is stable, that is, if the input
amplitude is bounded, the output amplitude is.

Assume a well-formed interval ra, bs, including
0, and c P r0, 1s. In Coq:
Hypothesis (Hab : a <= b).
Hypothesis (H0ab : 0 \in ‘[a, b]).
Hypothesis (Hrc : c \in ‘[0, 1]).

then, we will prove:

ti P ra, bsu smoothpcq to P ra, bsu

@i1, i2, p@t.ϕ1pi1ptqq ^ ϕ1pi2ptqqq ùñ p@t.ψpi1ptq ` i2ptqqq

tϕ1, ϕ2u ` tψu
Prim

tϕu f tθu tθu g tψu

tϕu f : g tψu
Comp

|ù ψpx0q tθ, ϕu f tψu tψu g tθu

tϕu f „ g tψu
Feed

Figure 3: A simple logic for Faust program verification

l

tIabu ˚p1´ cq tIabcu

l

tIabc, Iabcu ` tIabu

l

tIabu ˚pcq tIabcu

tIabcu ` „ ˚pcq tIabu

ti P ra, bsu ˚p1´ cq : ` „ ˚pcq to P ra, bsu
with:

Iabpxq ” x P ra, bs Iabcpxq ” x P ra ˚ c, b ˚ cs Iabcpxq ” x P ra ˚ p1´ cq, b ˚ p1´ cqs

Figure 4: Derivation for smooth

Let us recall the definition of smooth:
smooth(c) = ∗(1´c) : + „∗(c)

then, we should apply rule Comp, with θpsq “
s P ra ˚ p1´ cq, b ˚ p1´ cqs. Using Prim gets us
to a first obligation, shown in Coq as:
Hi : i \in ‘[a, b]
============================
i ∗ (1 ´ c) \in ‘[(a ∗ (1 ´ c)), (b ∗ (1 ´ c))]

which can be proved using the libraries by:
by rewrite ?itv_boundlr /= ?ler_wpmul2r

?ler_subr_addr ?add0r ?Hrc ?(itvP Hi).

The next step is to apply Feed , choosing
θpsq “ s P ra ˚ c, b ˚ cs. Then, we apply Prim
twice to get the obligations for + and ∗(c):
H1 : i1 \in ‘[(a ∗ c), (b ∗ c)]
H2 : i2 \in ‘[(a ∗ (1 ´ c)), (b ∗ (1 ´ c))]
============================
i1 + i2 \in ‘[a, b]

solved by:
have Ha: a = a ∗ c + a ∗ (1 ´ c)

by rewrite ´mulrDr addrC addrNK mulr1.
have Hb: b = b ∗ c + b ∗ (1 ´ c)

by rewrite ´mulrDr addrC addrNK mulr1.
by rewrite itv_boundlr /= Ha Hb

!ler_add ?(itvP H1) ?(itvP H2).

where have introduces a local lemma, and
Hi : i \in ‘[a, b]
============================
i ∗ c \in ‘[(a ∗ c), (b ∗ c)]

solved by:
by rewrite itv_boundlr /=

?ler_wpmul2r ?(itvP Hi) ?Hrc.

We have chosen to prove the arithmetic obliga-
tions manually, but we should remark that there
exists tools that can prove this kind of results
automatically. The full derivation is in Figure 4.

7 Conclusion

We presented a case for the use of developer-
assisted formal reasoning tools in the field of
computer music and, more generally, audio DSP.
We gave a quick tour of the Coq/SSReflect en-
vironment, which we believe can be particularly
well fitted to reach such a vision. We applied our
approach to the Faust audio signal processing,
providing a formal semantics for its core and
detailing how a property of a filter can be proven
using a specific logic designed for Faust.
Future work will tackle other applications in

the audio processing domain to assess our tool,
together with the development of specific DSP
mechanisms within Coq/SSReflect (tactics,
tacticals, or even a dedicated DSP library). We
would also be interested in seeing how our sys-
tem can be of help to prove more foundational
theorems such as the Shannon Sampling Theo-
rem.

8 Acknowledgements

We want to thank Yann Orlarey and Arnaud
Spiwack for their insightful comments. Partial
funding for this research was provided by the
ANR FEEVER Project.

References
Karim Barkati, Haisheng Wang, and Pierre
Jouvelot. 2014. Faustine: A Vector Faust
Interpreter Test Bed for Multimedia Signal
Processing - System Description. In Michael
Codish and Eijiro Sumii, editors, Functional
and Logic Programming - 12th International
Symposium, FLOPS 2014, Kanazawa, Japan,
June 4-6, 2014. Proceedings, volume 8475 of
Lecture Notes in Computer Science, pages 69–
85. Springer.

Yves Bertot and Pierre Castéran. 2004. Inter-
active Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive
Constructions. Springer.

Aloïs Brunel, Marco Gaboardi, Damiano
Mazza, and Steve Zdancewic. 2014. A core
quantitative coeffect calculus. In Zhong Shao,
editor, Programming Languages and Systems,
volume 8410 of Lecture Notes in Computer
Science, pages 351–370. Springer Berlin Hei-
delberg.

Swarat Chaudhuri, Sumit Gulwani, and
Roberto Lublinerman. 2012. Continuity and
Robustness of Programs. Commun. ACM,
55(8):107–115, August.

Maxime Dénès, Anders Mörtberg, and Vin-
cent Siles. 2012. A refinement-based approach
to computational algebra in COQ. In Lennart
Beringer and Amy Felty, editors, ITP - 3rd In-
ternational Conference on Interactive Theorem
Proving - 2012, volume 7406 of Lecture Notes
In Computer Science, pages 83–98, Princeton,
USA. Springer, Springer.

Sarah Denoux, Stéphane Letz, Yann Orlarey,
and Dominique Fober. 2014. FAUSTLIVE,
Just-In-Time Faust Compiler... and much
more. In Linux Audio Conference.

Naghmeh Ghafari, Ramana Kumar, Jeff Joyce,
Bernd Dehning, and Christos Zamantzas. 2011.
Formal Verification of Real-time Data Process-
ing of the LHC Beam Loss Monitoring System:
A Case Study. In Proceedings of the 16th In-
ternational Conference on Formal Methods for
Industrial Critical Systems, FMICS’11, pages
212–227, Berlin, Heidelberg. Springer-Verlag.

Georges Gonthier, Assia Mahboubi, and En-
rico Tassi. 2008. A Small Scale Reflection Ex-
tension for the Coq system. Research Report
RR-6455, INRIA.

Pierre Jouvelot and Yann Orlarey. 2011. De-
pendent vector types for data structuring in
multirate Faust. Computer Languages, Sys-
tems & Structures, 37(3):113–131.

Neelakantan R. Krishnaswami. 2013. Higher-
order functional reactive programming with-
out spacetime leaks. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN In-
ternational Conference on Functional Program-
ming, ICFP’13, Boston, MA, USA - Septem-
ber 25 - 27, 2013, pages 221–232. ACM.

Xavier Leroy. 2009. Formal verification of
a realistic compiler. Communications of the
ACM, 52(7):107–115.

Yann Orlarey, Dominique Fober, and Stephane
Letz. 2004. Syntactical and semantical aspects
of Faust. Soft Comput., 8(9):623–632.

Anis Souari, Amjad Gawanmeh, Sofiène Tahar,
and Mohamed Lassaad Ammari. 2014. Design
and verification of a frequency domain equal-
izer. Microelectronics Journal, 45(2):167–178.

