
IMPULSE-RESPONSE AND
CAD-MODEL-BASED PHYSICAL MODELING

IN FAUST
P.-A. GRUMIAUX, R. MICHON, E. GALLEGO ARIAS AND P. JOUVELOT

pierreamaury.grumiaux@gmail.com, rmichon@ccrma.stanford.edu,

{emilio.gallego_arias,pierre.jouvelot}@mines-paristech.fr

CONTEXT
The FAUST programming language [4] has proven to be well suited to
implement physical models of music instruments using waveguides
and model synthesis [1][2][3]. We developed two tools allowing to
easily generate FAUST modal physical models:

1. ir2dsp.py takes the audio file of an impulse response and con-
verts it into a FAUST program implementing the corresponding
modal physical model;

2. mesh2dsp.py outputs the same type of model from a .stl file
specifying a 3D object.

FAUST MODAL PHYSICAL MODEL
Linear percussion instruments can be implemented using banks of
resonant bandpass filters [2]. Each filter implements one mode of the
system and is configured with 3 parameters : the frequency of the
mode, its gain and its resonance duration (t60). Its FAUST version,
modeFilter below, uses a biquad filter (tf2) and computes its
poles and zeroes for a given frequency and t60.

modeFilter(f,t60) = tf2(b0,b1,b2,a1,a2)
with{

b0 = 1;
b1 = 0;
b2 = -1;
w = 2*PI*f/SR;
r = pow(0.001,1/float(t60*SR));
a1 = -2*r*cos(w);
a2 = rˆ2;

};
mode(f,t60,gain) = modeFilter(f,t60)*gain;

Modal physical models are implemented using multiple parallel
(par in FAUST) instances of mode calls. The FAUST-generated block
diagram corresponding to such an implementation is presented be-
low (we used arbitrary parameters here).

mode(100)(0.9f)(0.9f)

mode(200)(0.8f)(0.9f)

mode(300)(0.6f)(0.5f)

mode(400)(0.5f)(0.6f)

process

Such a model can be excited by a filtered noise impulse.

White Noise Lowpass Highpass Envelope To Model

IR2DSP.PY AND MESH2FAUST
ir2dsp.py takes an audio file and extracts modal physical model-
based information for each mode: frequency and gain, by carrying
out peak detection; t60, by measuring bandwidth at -3 dB. A FAUST
file is then generated. With this tool, one can strike any object, record
the resulting sound and turn it into a playable digital instrument.

mesh2dsp.py gives the same output, using a .stl file (describing a
3D object) as input, as follows:

• conversion of the input object to a mesh;

• Finite Element Analysis (FEA) using the Elmer package, with
the Young modulus, Poisson coefficient and density of the ma-
terial as parameters:

• frequency and gain computation from eigenvalues and mass
participation for each mode;

• t60 values input (these values cannot be computed by this
method unfortunately, so they are user-provided parameters).

EVALUATION
Spectrograms of (a) the recording of the IR of a can and (b) its
ir2dsp.py-generated modal physical model:

(a)

(b)

The original and synthesized sound representations are relatively
close (but see Future Directions).

FUTURE DIRECTIONS
We plan to improve ir2dsp.py by using a better t60 measurement
algorithm. For now, the calculation is done by measuring the band-
width for each peak, while it would be a better approach to extract it
from a time-frequency representation of the signal.

Regarding mesh2dsp.py, we would like to try other open-source
packages than Elmer to carry out FEA.

REFERENCES

[1] R. Michon, J. O. Smith. Faust-STK: a set of linear and nonlinear physical models for the
Faust programming language. In Proceedings of the DAFx-11 Conference, 2011

[2] J. O. Smith. Physical Audio Signal Processing for Virtual Musical Instruments and Dig-
ital Audio Effects. W3K Publishing, 2010

[3] J.-M. Adrien. The Missing Link: Modal Synthesis. In "Representations of Musical
Signals", MIT Press, 1991

[4] Y. Orlarey, D. Fober, S. Letz. Syntactical and Semantical Aspects of Faust. Soft Com-
puting, 2004

Project funded by ANR FEEVER. Linux Audio Conf., St-Etienne, May 18-21, 2017.

ARTIFACTS
Source code available at: https://github.com/rmichon/pmFaust/


