
A Rationale for Faust Design Decisions

Yann Orlarey1, Stéphane Letz1, Dominique Fober1,
Albert Gräf2, Pierre Jouvelot3

GRAME, Centre National de Création Musicale, France1,
Computer Music Research Group, U. of Mainz, Germany2,

MINES ParisTech, PSL Research University, France3

DSLDI, October 20, 2014

1-Music DSLs Quick Overview

Some Music DSLs

4CED

Adagio

AML

AMPLE

Arctic

Autoklang

Bang

Canon

CHANT

Chuck

CLCE

CMIX

Cmusic

CMUSIC

Common
Lisp Music

Common
Music

Common
Music
Notation

Csound

CyberBand

DARMS

DCMP

DMIX

Elody

EsAC

Euterpea

Extempore

Faust

Flavors
Band

Fluxus

FOIL

FORMES

FORMULA

Fugue

Gibber

GROOVE

GUIDO

HARP

Haskore

HMSL

INV

invokator

KERN

Keynote

Kyma

LOCO

LPC

Mars

MASC

Max

MidiLisp

MidiLogo

MODE

MOM

Moxc

MSX

MUS10

MUS8

MUSCMP

MuseData

MusES

MUSIC 10

MUSIC 11

MUSIC 360

MUSIC 4B

MUSIC
4BF

MUSIC 4F

MUSIC 6

MCL

MUSIC
III/IV/V

MusicLogo

Music1000

MUSIC7

Musictex

MUSIGOL

MusicXML

Musixtex

NIFF

NOTELIST

Nyquist

OPAL

OpenMusic

Organum1

Outperform

Overtone

PE

Patchwork

PILE

Pla

PLACOMP

PLAY1

PLAY2

PMX

POCO

POD6

POD7

PROD

Puredata

PWGL

Ravel

SALIERI

SCORE

ScoreFile

SCRIPT

SIREN

SMDL

SMOKE

SSP

SSSP

ST

Supercollider

Symbolic
Composer

Tidal

First Music DSLs, Music III/IV/V (Max Mathews)

1960: Music III introduces the concept of Unit Generators

1963: Music IV, a port of Music III using a macro assembler

1968: Music V written in Fortran (inner loops of UG in
assembler)

ins 0 FM;

osc bl p9 p10 f2 d;

adn bl bl p8;

osc bl bl p7 fl d;

adn bl bl p6;

osc b2 p5 p10 f3 d;

osc bl b2 bl fl d;

out bl;

FM synthesis coded in CMusic

Csound

Originally developed by Barry Vercoe in 1985, Csound is today "a
sound design, music synthesis and signal processing system,
providing facilities for composition and performance over a wide
range of platforms." (see http://www.csounds.com)

instr 2

a1 oscil p4, p5, 1 ; p4=amp

out a1 ; p5=freq

endin

Example of Csound instrument

f1 0 4096 10 1 ; sine wave

;ins strt dur amp(p4) freq(p5)

i2 0 1 2000 880

i2 1.5 1 4000 440

i2 3 1 8000 220

i2 4.5 1 16000 110

i2 6 1 32000 55

e

Example of Csound score

http://www.csounds.com

Max
Max (Miller Puckette, 1987) is visual programming language for real
time audio synthesis and algorithmic composition with multimedia
capabilities. It is named Max in honor of Max Mathews. It was
initially developed at IRCAM. Since 1999 Max has been developed
and commercialized by Cycling74. (see http://cycling74.com/)

http://cycling74.com/

SuperCollider

SuperCollider (James McCartney, 1996) is an open source
environment and programming language for real time audio
synthesis and algorithmic composition. It provides an interpreted
object-oriented language that functions as a network client to a
state of the art, real-time sound synthesis server. (see
http://supercollider.sourceforge.net/)

http://supercollider.sourceforge.net/

Pure Data

Pure Data (Miller Puckette, 1996) is an open source visual
programming language of the Max family. "Pd enables musicians,
visual artists, performers, researchers, and developers to create
software graphically, without writing lines of code". (see
http://puredata.info/)

http://puredata.info/

Elody

Elody (Fober, Letz, Orlarey, 1997) is a music composition
environment developed in Java. The heart of Elody is a music
language that embeds the lambda-calculus. The language
expressions are handled through visual constructors and Drag and
Drop actions allowing the user to play in real-time with the
language.

OpenMusic
OpenMusic (Agon et al. 1998) is a music composition environment
embedded in Common Lisp. It introduces a powerful visual syntax
to Lisp and provides composers with a large number of composition
tools and libraries.

ChucK

ChucK (Ge Wang, Perry Cook 2003) is a concurrent, on-the-�y,
audio programming language. It o�ers a powerful and �exible
programming tool for building and experimenting with complex
audio synthesis programs, and real-time interactive control. (see
http://chuck.cs.princeton.edu)

// make our patch

SinOsc s => dac;

// time -loop , in which the osc's frequency

// is changed every 100 ms

while(true) {

100:: ms => now;

Std.rand2f (30.0 , 1000.0) => s.freq;

}

http://chuck.cs.princeton.edu

Live Coding

Live Coding is programming live, on stage, as an artistic
performance.

Reactable

The Reactable is a tangible programmable synthesizer. It was
conceived in 2003 by Sergi Jordà, Martin Kaltenbrunner, Günter
Geiger and Marcos Alonso at the Pompeu Fabra University in
Barcelona.

2-Faust Overview

Brief Overview to Faust
http://faust.grame.fr

Faust (Orlarey, Letz, Fober 2002) is a Domain-Speci�c
Language for real-time signal processing and synthesis (like
Csound, Max/MSP, Supercollider, Puredata,. . .).

A Faust program denotes a signal processor: a (continuous)
function that maps input signals to output signals.

Programming in Faust is essentially combining signal
processors using an algebra of 5 composition operations:

process = noise*hslider("level" ,0,0,1,0.01);

noise = +(12345)~*(1103515245):/(2147483647.0);

http://faust.grame.fr

Brief overview to Faust
http://faust.grame.fr

Faust o�ers end-users a high-level alternative to C to develop
audio applications for a large variety of platforms, from desktop
to web applications, from audio plug-ins to embedded systems.

The role of the Faust compiler is to synthesize the most
e�cient implementations for the target language (C, C++,
LLVM, Javascript, etc.).

Faust is used on stage for concerts and artistic productions, for
education and research, for open sources projects and
commercial applications:

http://faust.grame.fr

3-Composing Signal Processors

Faust programs are signal processors

A Faust program denotes a signal processor p : Sn → Sm, a
(continuous) function that maps a group of n input signals to
a group of m output signals.

Two kinds of signals:
I Integer signals: SZ = Z→ Z
I Floating-point signals: SR = Z→ R
I S = SZ ∪ SR

The value of a Faust signal is always 0 before time 0:
I ∀s ∈ S, s(t < 0) = 0

Programming in Faust is essentially composing signal
processors together using an algebra of �ve composition
operations: <: :> : , ~

Some Primitive Signal Processors

!:

∣∣∣∣ S1 → S0
λ〈x〉.〈〉 (cut)

_:

∣∣∣∣ S1 → S1
λ〈x〉.〈x〉 (wire)

3:

∣∣∣∣∣∣
S0 → S1

λ〈〉.〈λt.
{

0 t < 0
3 t ≥ 0

〉 (number)

+:

∣∣∣∣ S2 → S1
λ〈x , y〉.〈λt.x(t) + y(t)〉 (addition)

@:

∣∣∣∣ S2 → S1
λ〈x , y〉.〈λt.x(t − y(t))〉 (delay)

Composition Operations

(A,B) parallel composition

(A:B) sequential composition

(A<:B) split composition

(A:>B) merge composition

(A~B) recursive composition

Composition Operations
Parallel Composition

The parallel composition (A,B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

(A,B): (Sn → Sm)→ (Sn′ → Sm′
)→ (Sn+n′ → Sm+m′

)

Figure 1 : Example of parallel composition (10,*)

Composition Operations
Sequential Composition

The sequential composition (A:B) connects the outputs of A to the
corresponding inputs of B.

(A:B): (Sn → Sm)→ (Sm → Sp)→ (Sn → Sp)

Figure 2 : Example of sequential composition ((*,/):+)

Composition Operations
Split Composition

The split composition (A<:B) operator is used to distribute the
outputs of A to the inputs of B.

(A<:B): (Sn → Sm)→ (Sk.m → Sp)→ (Sn → Sp)

Figure 3 : Example of split composition ((10,20) <: (+,*,/))

Composition Operations
Merge Composition

The merge composition (A:>B) is used to connect several outputs
of A to the same inputs of B. Signals connected to the same input
are added.

(A:>B): (Sn → Sk.m)→ (Sm → Sp)→ (Sn → Sp)

Figure 4 : Example of merge composition ((10,20,30,40) :> *)

Composition Operations
Recursive Composition

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

(A~B): (Sn+n′ → Sm+m′
)→ (Sm′ → Sn′)→ (Sn → Sm+m′

)

Figure 5 : Example of recursive composition +(12345)~*(1103515245)

A Very Simple Example

process = 1 : +~_;

1
+

process

y(t) =

{
0 t < 0
1+ y(t − 1) = 1+ t t ≥ 0

0 1 2 3 4-1-2-3-4

t

A Mixer Channel

Figure 6 : Source code of a simple mixer channel
Figure 7 :
Resulting
application

4-Easy Deployment

Faust Architecture System
Easy deployment: one Faust code, multiple targets

FAUST
Compiler CSound

Q

Alsa

Max/MSP
Chuck

VST

Jack

Ladspa

Coreaudio

libsndfile

PortAudio

ActionScript
Pure Data

SuperCollider

Pure

Matlab

FAUST
Specification

etc...

Faust Architecture System
Separation of concern

The architecture �le describes how to connect the audio
computation to the external world.

DSP code

User Interface
Module

Audio Driver Module

User Interface
Module

Audio Driver Module

DSP code

Faust Architecture System
Examples of supported architectures

Audio plugins :
I AudioUnit
I LADSPA
I DSSI
I LV2
I Max/MSP
I VST
I Pure Data
I Csound
I SuperCollider
I Pure
I Chuck
I Octave
I Flash

Audio drivers :
I Jack
I Alsa
I CoreAudio
I Web Audio API

Graphic User Interfaces :
I QT
I GTK
I Android
I iOS
I HTML5/SVG

Other User Interfaces :
I OSC
I HTTPD

5-Compiler/Code Generation

Faust Compiler
Main phases of the compiler

Faust Program

evaluation

Block-Diagram
in Normal Form

symbolic propagation

Signal Equations

normalization

Signal Equations
in Normal Form

type inference

Typed Signals

code generation

Implementation
Code (C++)

Faust Compiler
Four code generation modes

scalar code generator

vector code generator
(loop separation)

parallel code
generator
(OpenMP
directives)

parallel code
generator

(Work Stealing
Scheduler)

6-Performance

Performance of the Generated Code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Di�erence

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
�utestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the Generated Code
What improvements to expect from parallelized code ?

Sonik Cube
Compared performances of the various C++ code generation
strategies according to the number of cores:

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Sonik Cube

Mac Pro 8, Faust 0.9.20, icc 11.1.069

omp
sch
scal
vec

performance (MB/s)

n
u

m
b

e
r

o
f

c
o

re
s

7-Tools

Tools
Faust ecosystem

faust
command line compiler

(lin, osx)

faust2puredata
faust2max6
faust2vst
faust2android
faust2ios
…
command line builders

FaustWorks
IDE

(lin, osx)

FaustLive
IDE with embedded Faust compiler

(lin, osx, win)

faustgen~
embedded Faust compiler for max

(osx, win)

http://faust.grame.fr/index.
php/online-examples

Online IDE
(any browser)

http://faustservice.grame.fr/
Compiler API

(used by FaustLive)

local tools web servers

faustcompile
embedded Faust compiler for csound6

(lin, osx, win)

Tools
Available compilers

Command line tools
I faust command line
I faust2xxx command line

Web based tools
I Online Compiler (http://faust.grame.fr)
I Faustweb API (http://faustservice.grame.fr)

Embedded compiler (libfaust)
I Faustgen for Max/MSP
I Faustcompile, etc. for Csound (V. Lazzarini)
I Faustnode for the Web Audio API
I Antescofo (IRCAM's score follower)
I LibAudioStream (Audio renderer)
I iScore (LaBRI)

IDE
I FaustWorks (requires Faust)
I FaustLive (self contained)

Tools
Available Libraries

Some useful libraries

math.lib

music.lib, imports math.lib

hoa.lib, imports math.lib

�lter.lib, imports music.lib

e�ect.lib, imports �lter.lib

oscillator.lib, imports �lter.lib

Tools
Some useful links

Website and online compiler :
I http://faust.grame.fr

Faust distribution:
I http://sourceforge.net/projects/faudiostream/
I git clone

git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream
I cd faudiostream; make; sudo make install

FaustWorks:
I http://sourceforge.net/projects/faudiostream/
I git clone git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks

FaustLive:
I http://sourceforge.net/projects/faudiostream/
I git clone git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faustlive

http://faust.grame.fr
http://sourceforge.net/projects/faudiostream/
http://sourceforge.net/projects/faudiostream/
http://sourceforge.net/projects/faudiostream/

8-To Summarize

To Summarize

FAUST is a DSL for real-time signal processing and synthesis. Its
design is based on several principles:

High-level speci�cation language

End-Users oriented

Simple well-de�ned formal semantics

Purely synchronous functional approach

Textual, "block-diagram oriented", syntax

Favors reuse and composition of existing programs,

E�cient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code

Easy deployment: single code multiple targets

Preservable via automatic documentation

9-Bibliography

Bibliography

Syntactical and semantical aspects of Faust,
Y. Orlarey, D. Fober, S. Letz � Soft Computing, 2004 -
Springer

DSP programming with Faust, Q and Supercollider,
A. Graef, S. Kersten, Y. Orlarey � Proceedings of the Linux
Audio Conference, 2006

Dependent vector types for data structuring in multirate Faust,
P. Jouvelot, Y. Orlarey � Computer Languages, Systems &
Structures, 2011 - Elsevier

Signal Processing Libraries for Faust,
J. Smith � Proceedings of the Linux Audio Conference, 2012

10-Acknowledgments

Acknowledgments

This research was funded in part by the Agence nationale pour la recherche (ANR)
via the following projects:

ASTREE [2008-CORD-003]
INEDIT [ANR 2012 CORD 009]
FEEVER [ANR-13-BS02-0008]

Many persons have been contributing to the FAUST project by providing code for
the compiler, architecture �les, libraries, examples, documentation, scripts, bug
reports, ideas, etc. We would like to thank them and especially (in alphabetic order):
Fons Adriaensen, Karim Barkati, Jerome Barthelemy, Tim Blechmann, Tiziano Bole,
Alain Bonardi, Myles Borins, Baktery Chanka, Thomas Charbonnel, Ra�aele
Ciavarella, Julien Colafrancesco, Damien Cramet, Sarah Denoux, Robin Gareus,
Etienne Gaudrin, Olivier Guillerminet, Albert Graef, Pierre Guillot, Olivier
Guillerminet, Pierre Jouvelot, Stefan Kersten, Victor Lazzarini, Matthieu Leberre,
Christophe Lebreton, Mathieu Leroi, Fernando Lopez-Lezcano, Kjetil Matheussen,
Hermann Meyer, Romain Michon, Remy Muller, Eliott Paris, Reza Payami, Laurent
Pottier, Sampo Savolainen, Nicolas Scaringella, Anne Sedes, Priyanka Shekar,
Stephen Sinclair, Travis Skare, Julius Smith, Mike Solomon, Michael Wilson

	Block-Diagram Algebra
	Architectures
	Compiler
	Performance
	Tools
	To Summarize
	Bibliography
	Acknowledgments

